Pages

UNIT 6 C


4  marks  question

1.  Explain  the  various steps involved in  powder  metallurgy  process.





2.  What do you  understand  by  powder  metallurgy?  What  are  the  main  stages  of powder  metallurgy process?

A. Refer Question 1 Answers

3.  State  briefly  the  process  of  making  a  powder  metallurgy  product  having  improved  properties.

A.Refer Question 1 Answers

4.  Enlist the  products  made  from  powder  metallurgy. Explain  all four steps  of power metallurgy.  

A. Products made from powder metallurgy

• Gears

• Cams

• Connecting  rods

 • Crank shafts

 • Bushings  & Bearings

• Piston  rings

 • Light  bulb  filaments

• Cutting tools

Remaining Answer Refer Question 1

6.  With the  help  of neat  sketch  explain  cold  isostatic  pressing.

A. Photos

7.  With the  help  of neat  sketch  explain  hot  isostatic  pressing.

A.


9.  Explain  the  mechanism  of  sintering.

A. Machanism of sintering

• Sintering mechanisms  are complex  and  depend on the  composition  of metal particles  as  well  as processing  parameters.

• As  temperature  increases  two adjacent  particles begin to form  a bond  by  diffusion  (solid-state bonding).

 • If  two  adjacent  particles  are of different  metals, alloying can  take place  at the interface of  two particles.

  • One of the  particles  may have a  lower melting point  than  the other.   In  that case,  one  particle may  melt and  surround  the  particle that  has  not melted (liquid-phase  sintering).

 

 13.  Describe the  atomization  process  of  making  powder in  detail with neat  sketch.

A.

14.  Give  advantages, limitation  &  applications  of powder  metallurgy.  

A. Advantages  of  P/M for  Structural Components:

These  may  be  classified  into  two main headings;

(a) Cost  advantages,  and (b) Advantages  due  to particular  properties  of  sintered  components.

 Cost  Advantages: (i) Zero  or minimal scrap;

(ii) Avoiding  high machining  cost  in  mass  production  as irregularly shaped  holes,  flats, counter  bores,  involute  gear  teeth,  key-ways can  be molded into  the  components;

 (iii) Extremely  good surface  finish at  very low additional  cost after sizing  and coining;

(iv) very  close tolerance  without  a machining operation;

 (v) Assembly of  two or  more  parts  (by I/M) can  be  made  in  one piece;

 (vi) Separate  parts can  be combined  before sintering.

(vii) High  production  rates

Advantages  due to  the  particular  properties  of sintered  components.

(i) By  achieving  up  to  95% density,  the  mechanical and physical  properties  are comparable with  cast materials and  in  certain  cases with wrought  materials. In certain cases  99.9  % dense  structure  can  be obtained  (liquid phase  sintering);

(ii) Platting  is also  possible  directly  at  90% density  and above  and  after  impregnation  of  the pores  at lower densities.

 (iii) Damping  out  vibrations  and noise  property with controlled  residual  porosity;

(iv) Ability  to  retain lubricants  such  as lead,  graphite  and oil  giving  less wear  and longer  life  to  bearings;

(v) Achieving  a close  control  of  porosity  to  give a specified  balance  between strength  and lubrication properties  (a superiority  over wrought  materials);

(i) Improved  surface  finish  with  close control  of mass,  volume  and  density;

(ii) Components  are  malleable  and  can  be  bent without  cracking.

 P/M makes  possible  the  production  of hard  tools like  diamond  impregnated  tools  for  cutting porcelain,  glass and  tungsten  carbides.

 Reactive  and  non-reactive  metals  (both  having high  m.p  &low  m.p)  can  be  processed.

Limitations of P/M Process

(i) The  principal  limitations  of  the  process are those imposed  by  the  size and  shape  of  the  part, the compacting  pressure  required and  the  material used.

 (ii) The process  is capital  intensive  and initial  high  costs mean that the production  ranges in excess  of  10,000 are  necessary  for  economic viability  (cost of dies  is very  high).

(iii) The  configuration  of  the  component should  be such that  it can  be  easily  formed  and ejected  from  a  die, undercuts  and  re-entrant angles  can not  be molded (when  using  conventional  pressing  and sintering)  and have  to  be machined subsequently.

(iv)  The  capacity  and  stroke  of  the compacting press  and  the  compacting  pressure  required limit  the  cross-sectional  area  and  length  of  the component.

(v)  Spheres  cannot  be  molded  and  hence  a central cylindrical  portion  is required.

 (vi)  Sintering  of  low melting  point  powders  like lead,  zinc,  tin  etc.,  offer  serious  difficulties.

Applications:

Motor Cycle Parts

Vehicles Engine  Parts

Industrial  Machines  Parts

For  Electric Motors


15. Enlist methods of manufacturing metal powder. Discuss carbonyl in detail.

A. Methods  of  Powder  Production

• Atomization

• Reduction

• Electrolytic deposition

• Carbonyl process

• Comminution processes

• Mechanical Alloying

Carbonyl process

 • React high purity Fe or Ni with CO to form gaseous carbonyls

• The reaction products are then decomposed to iron and nickel.

 • Small, dense, uniformly spherical powders of high purity

Carbonyl metallurgy is useful as a low temperature metal coating technique that may well find many applications in the future.

Iron carbonyl is stable as iron pentacarbonyl, where five carbon monoxide molecules are pendantly bonded to the iron atom, while nickel carbonyl is stable as nickel tetracarbonyl, which has four carbon monoxide molecules pendantly bonded to the nickel atom. Both can be formed by the exposure of the powdered metal to carbon monoxide gas at temperatures of around 75 degrees Celsius. Both the metal carbonyls decompose near 175 °C, resulting in a vapor plated metallic coating. The thickness of thevapor plated deposit can be increased to desired thicknesses by controlling the amount of metal carbonyl used and the duration of the plating process.


CONVERSATION

0 comments:

Post a Comment